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ABSTRACT 
Nitrous oxide (N2O) contributes almost 6 % of the overall global warming effect, on the other hand its contribution from 
agricultural sector is approximately 16 %. Among this almost   80 % of N2O is emitted from the application “N” 
fertilizers. Hence, this study was formulated to evaluate the influence of nitrification inhibitor viz., Dicyandiamide (DCD) 
to minimize the N2O emission in paddy soil of Cauvery Delta Zone which is a major paddy growing region of Tamil Nadu. 
The N2O efflux was collected from the soils incorporating various approaches of “N” application along with DCD by 
means of “N” inhibitor. All the treatments registered the higher N2O efflux on the second day after the application of 
fertilizer. The average emission recorded during initial day was 0.71 mg/m2 /day it consequently amplified to 01.83 
mg/m2 /day on the first day, then recorded higher emission of 2.78 mg/m2 /day on the second day and further 
diminished (1.40 mg/m2 /day) on the third day. Consequently noticeable temporal variation pattern in N2O efflux in tune 
with the depletion of the substrate was noticed. Among the treatments studied, Leaf Colour Chart (LCC) based “N”  (@30 
kg N/ha keeping the LCC value 4 as standard) + DCD @ 10 % of applied “N”  followed by Site Specific Nutrient 
Management (SSNM) based “N”  with fixed split approach {35 % N at 15 Days After Transplanting (DAT), 40 % N at 30 
DAT, 25 % at 45 DAT} with use of LCC at each stage + DCD @ 10 % of applied “N”  recorded lower mean emissions of 0.46 
mg/m2 /day and 0.61 mg/m2 /day, respectively. The higher N2O emission was recorded under early completion of “N”   
application (25 % basal 50 % at 20 DAT and 25 % at 40 DAT) which recoded as 5.14 mg/m2 /day. Amongst the stages of 
crop growth, flowering stage recorded the higher emission of 2.12 mg/m2 /day of N2O and total seasonal emission was 
calculated as 0.16 kg/ha.  
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INTRODUCTION  
Nitrous oxide (N2O) is one among the trace gases responsible for global warming and depletion of ozone 
in the stratosphere. It accounts for 5% of the total greenhouse effect and 250 times more effective than 
CO2 on molecule to molecule basis in absorbing infrared radiation with 150 years of atmospheric lifetime 
[1]. It directs that it never reacts with the atmospheric substances nor precipitated by the moisture in 
atmosphere and then moves uninterrupted directly to the stratosphere to damage ozone layer and 
further move through NO formation  as indirect measure [2]. Atmospheric concentration of nitrous oxide 
has raised from 285 ppbv [3] during the pre industrial era to 310 ppbv in 1996 [4].  During  nitrogen 
cycling, this  nitrogen nitrous oxide is produced through biological action  in the ecosystem. Soil is one of 
the reckoned source of atmospheric N2O [5]. Application of “N” fertilizers proliferates the N2O emissions 
[6]. Emissions of N2O from “N” fertilized croplands vary considerably, ranging between 0.001% and 6.8% 
of applied “N” [5,6]. From the agricultural soils, denitrification and nitrification are the two processes 
responsible for formation of N2O. In both these processes, nitrite (NO2 -) is formed as an intermediate 
compound. During the process of nitrification, NH4+ , in aerobic condition, gets oxidized to NO3- via 
hydroxylamine and nitrite, releasing N2O as a byproduct, while in denitrification, the NO3 - gets completely 
reduced to N2 evolving N2O as an intermediate product. Therefore, the end product of nitrification works 
as substrate for denitrification. Hence, controlling the first process will certainly help in regulation of 
second process to some extent. Nitrification inhibitors are composites that decrease the proportion at 
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which ammonium is transformed into nitrates both through killing and  interupting the metabolism of 
nitrifying microorganisms.  
The Dicyandiamide (DCD) is one amoung the most widely utilised bacteriostatic nitrification inhibitors 
used for the agriculture [7]  and decomposes in soil to non-toxic products. Effect of DCD on N2O 
emissions has been reported by Klein and co workers [8] in grass land, Mosier and co workers[9] in 
wheat and maize and McTaggart and co workers[10] in ryegrass, grassland and spring barley. The 
present study was undertaken to observe the influence of DCD on N2O emission from the irrigated paddy 
soils of Cauvery Delta Zone to evaluate its suitability for reducing N2O emission to the atmosphere 
 
MATERIALS AND METHODS  
This study was conducted to assess the potential of dicyandiamide (DCD) along with various “N” 
management approaches on the emission of N2O from agricultural soils. The field trial was carried out at 
TRRI  (Tamil Nadu Rice Research Institute) Aduthurai, Tamil Nadu(110 N latitude, 790 31’ E longitude, 
19.4 MSL). During normal years, the annual rainfall is 1200 mm of which around 70 % is received during 
September to October (North East Monsoon). The climate condition of the experimental site (Cauvery 
Delta) is sub tropical monsoon type. The experiment with fixed plots has been laid out in a RBD design 
(Randomized Block Design) with three replications. The details of the treatments are listed below.  

Table. 1. Treatment details 
 
T1 : Absolute control 
T2 : Blanket recommendation of Nitrogen {150kg N/ha in 4 splits 25 % each at basal, 15,30, and 45 Days After 

Transplanting (DAT)} 
T3 : Leaf Colour Chart (LCC) based N (30 kg N/ha keeping the LCC value 4 as standard) 
T4 : SSNM (Site Specific Nutrient Management) based N with fixed split approach (35 % N at 15 DAT, 40 % N at 

30 DAT, 25 % at 45 DAT with use of LCC at each stage) 
T5 : Early completion of “N” application (25 % basal 50 % at 20 DAT and 25 % at 40 DAT) 
T16 : T2 + Dicyandiamide (DCD) @ 10 % of applied “N”    
T7 : T3 + DCD @ 10 % of applied “N”     
T8 : T4 + DCD @ 10 % of applied “N”    
T9 : T5+ DCD @ 10 % of applied “N”    
* Common application (T2 to T9): Each 50 kg ha-1 of Phosphorus & potassium, micronutrient    
   mixture @ 25 kg ha-1 and Gypsum @ 500 kg ha-1 

 
A uniform plot size of 25 m2 was adopted for all the experiments as detailed above. Nitrogen was applied 
as per treatment schedule through urea while phosphorus and micronutrient mixture were applied 
entirely as basal and potassium in two equal splits (basal and at panicle initiation stage). The DCD was 
applied at the rate of 10% of applied N. Need based plant protection measures were taken up against pest 
and diseases. 
From the first to three days after fertilizer application the N2O efflux from all the plots was measured 
using static chambers and also measured during critical phases of crop production. To collect the gas 
generated in the experiment, acrylic assembly (height of 60 cm with 80 lit capacity) were positioned on 
the iron basement (Diameter 47 cm with 1562 cm2 total of area) which was introduced 10 cm inside the 
soil one day prior to the  collection of gas samples. The channel situated on the upper side of the base was 
filled with water to make the system air tight. One 3-way stopcock (Eastern Medikit Ltd. India) is tailored 
at the top of chamber to collect gas samples. Further chamber was scrupulously flushed numerous times 
with the help of 50 ml syringe to uniformly mix the inside air. A battery operated fan was run 
continuously during the sampling to circulate the air with in the chamber to facilitate the proper mixing 
of the gas inside.  
Nitrous oxide gas samples were collected with the help of 50 ml syringes along with hypodermic needle 
of 24 gauge at the interval of  0, 10, 20 and 30 min.  Syringes were fitted airtight with a three way stop 
cock to arrest the gas diffusion. The soil temperature, chamber temperature and water level inside the 
iron base was recorded during gas collection which was used to calculate N2O flux. Air samples were 
brought immediately to the laboratory for N2O analysis. The N2O concentration was determined with gas 
chromatograph (Varian, 450 GC, German), armed with Electron Capture Detector (ECD). Under the 
appropriate operating conditions (column temperature 35°C, injection temperature 120°C and detection 
temperature 300°C) a N2O peak was noticed in a specific retention time. Before the sample analysis, gas 
chromatograph was standardized by using different concentrations of N2O gas procured from Multitech 
Private Limited, New Delhi, India. 
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RESULTS AND DISCUSSION  
The experimental soil is fine, montmorillonitic, isohyperthermic, Udorthentic Chromusterts under the soil 
textural class ‘clay’ coming under Kalathur soil series. It was neutral in pH with a soluble salt 
concentration of < 0.5 dSm-1. The organic carbon status was medium falling in the range of 0.5 to 1 % 
(Table.1). Owing to its heavy clay content it possessed a high Cation Exchange Capacity (CEC). With 
regard to the available nutrient status, it recorded medium range of nitrogen (280 - 450 kg/ha) and 
potassium (118 to 280 kg/ha), while the available phosphorus was found to be very high (> 22 kg/ha). 
 Table.1.Initial characteristics of the experimental soil  

Sl.No Particulars Values 
1 pH (1:2.5) 7.77 
2 Electrical conductivity (dSm-1) (1:2.5) 0.32 
3 Organic carbon (%) 0.66 
4 Cation Exchange Capacity (C mol (p+) kg-1) 42.3 
5 Available N (kg ha-1) 291 
6 Available P (kg ha-1) 46.0 
7 Available K (kg ha-1) 234 

 
The measurement of nitrous oxide efflux was carried out from the soils amended with different nitrogen 
management practices along with 10 % of DCD. All the treatments were registered higher N2O efflux on 
the second day after fertilizer application. Irrespective of all the treatments, the mean emission recorded 
on the initial day was - 0.71 mg/m2/day and then increased to 1.83 mg/m2 /day on the first day and then 
reached the peak maximum emission on second day (2.78 mg/m2 /day), finally decreased to 1.40 mg/m2 
/day on the third day after fertilizer application due to the depletion of substrate. Hence, it showed a 
marked temporal variation pattern in N2O efflux (Fig. 1). 
 

 
Fig.1. Influence of different nitrogen management practices on N2O emission after the application of 

fertilizers 
The peak N2O efflux observed during this study was associated with application of NH4 based fertilizer, i.e. 
urea. Ammonium based fertilizer application directly stimulates nitrification process, as it serves the 
substrate for nitrifying bacteria in the oxic conditions. Initial lower efflux at the start of the experiment 
was due to the time required for hydrolysis of urea in soil to NH4. During the crop production, increase in 
N2O emission was noticed immediately after the application of fertilisers. Further the emission rates are 
tends to fluctuate about a low base line level, without depending about the amount of fertilizer applied 
[11]. A decreasing trend of N2O emission was ascribed to substrate exhaustion for nitrifying bacteria. 
Among the treatments Leaf Colour Chart (LCC) based N (30 kg N/ha keeping the LCC value 4 as standard 
+ DCD @ 10 % of applied N) (T7) followed by SSNM (Site Specific Nutrient Management) based N with 
fixed split approach (35 % N at 15 DAT, 40 % N at 30 DAT, 25 % at 45 DAT with use of LCC at each stage+ 
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DCD @ 10 % of applied N) (T8) recorded lowest average emission of 0.46 mg/m2 /day and 0.61 mg/m2 
/day, respectively. This might be due to need based addition of urea under LCC guided N management 
along with DCD have probably reduced the net NO3-N available for denitrification in the soil as a result of 
increased competition by plant roots. Irrespective of the days of fertilizer application, the maximum mean 
emission was recorded as 5.14 mg/m2 /day under early completion of “N”   application (25 % basal 50 % 
at 20 DAT and 25 % at 40 DAT- T5) followed by 3.57 mg/m2 /day in blanket recommendation of 
Nitrogen (T2) (150kg N/ha in 4 splits 25 % each at basal, 15, 30 and 45 DAT) due to higher available NO3- 
N. Therefore, in comparison to other treatments, there was an obvious reduction in the total seasonal N2O 
efflux from all the DCD treatments. Irrespective of all treatments, among the critical phased of crop 
growth, the flowering stage documented maximum emission of 2.12 mg/m2 /day followed by tillering 
stage (1.63 mg/m2/day) (Fig.2.). This is due to the coincidence of top dressing of nitrogenous fertilizers. 
Among the treatments, the treatment comprising of early completion of N (4.36, 5.71 and 2.68 mg/m2 
/day of N2O during tillering, flowering and maturity, respectively) and blanket recommendation (3.57, 
4.52 and 2.41 mg/m2 /day of N2O during tillering, flowering and maturity, respectively) recorded higher 
N2O emission in all the critical stages of crop growth. 
 

 
Fig.2.Influence of different nitrogen management practices on N2Oemission on critical  stages of 

crop growth 
 
The cumulative N2O emission for Kuruvai season, revealed that the highest emission of 0.31 kg/ha of N2O 
recorded under early completion of “N” application followed by blanket recommendation. This might be 
due to the higher availability of substrate for N2O emission. The need based application of fertilizers in 
the treatments LCC based N +DCD and SSNM based N+ DCD recorded lowest seasonal emissions of 
0.08kg/ha and 0.04 kg/ha, respectively. The treatment LCC based N and LCC based N +DCD received same 
dose of N fertilizes however the later was additionally supplied with 10% DCD which contributes 62.5 % 
reduction of N2O emission compared to the treatment without DCD application 
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Figure 3. Influence of different nitrogen management practices on seasonal N2O emission  along 
with DCD treatments 
 
DCD is not a biocide and has no effect on soil microbial biomass (Di and Cameron, 2004). This DCD act 
particularly on an ammonia monooxygenase confined in nitrosomonas through obstructive the site where 
ammonia is transformed to nitrite. It is also water soluble and biodegradable into carbon dioxide, water 
and ammonia. Its degradation rate and its efficiency decreases with time after application to soils. 
Increasing the soil temperature, pH, organic matter and moisture reduces its effectiveness [12,13]. DCD is 
a commonly used nitrification inhibitor; several investigations had also proved that DCD worked as a 
potential nitrification inhibitor for Indian conditions [14]. It is naturally broken down in the soil into non-
toxic product with no traces of residue left beyond the cropping year. A reduction in the N2O to the tune of 
40% in a dry sandy loam soils has been reported [15], 58–78% when mixed with urea in grassland and 
barley fields [10], 63% in lab condition [16] and 52.6% in winter wheat when fertilized with urea [17]. In 
some treatments, N2O emissions were generally low and the soil even functioned as a sink for N2O as 
evidenced by the negative N2O efflux. Kitzler and co workers [18] detected negative N2O fluxes from pine 
forests with moderate N-deposition, whereas a pine forest with high “N” loads exclusively functioned as a 
source of N2O during winter. N2O sink is an unusual trend, it needs to be established the mechanisms 
behind this sink phenomenon which is still unknown. 
 
CONCLUSION  
It could be inferred that both LCC based N management as well as the SSNM with fixed split N approach 
along with 10% of DCD registered lower N2O emission. It is also reasonable to suggest that DCD have 
potential to decrease nitrous oxide emission and other wise increase the efficiency of N cycle. They are 
potentially additional tool to assist agriculture to achieve its economic and environmental goals 
considerably. Hence, as a simple tool, LCC based “N”   management along with 10% of DCD is found to be 
the optimal N fertilization strategy for rice, since it gives lower N2O emission besides savings of N as 
compared to blanket “N”    recommendation. More research is required therefore to move this emerging 
technology from the current “proof of concept” situation to a practical, cost effective technology on the 
farm. 
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